
Computer Science

£?

The Measured Network Traffic of
Compiler-Parallelized Programs
Peter A. Dinda Brad M. Garcia

Kwok-Shing Leung

July 1998
CMU-CS-98-144

^^Wm'WrfSr^WfX
t> ^»fl*w1w-'W, r »■• *-*•■'

...^:<f?

til ...,.~^

.■S0W v$

«ertf

äjjjÄS).»'

i,-^-t^

liSPä

PL.r-.*?;f';5*

|,,,^5^

The Measured Network Traffic of
Compiler-Parallelized Programs
Peter A. Dinda Brad M. Garcia

Kwok-Shing Leung

July 1998
CMU-CS-98-144

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Using workstations interconnected by a LAN as a distributed parallel computer is becoming in-
creasingly common. At the same time, parallelizing compilers are making such systems easier
to program, Understanding the traffic of compiler-parallelized programs running on networks is
vital for network planning and for designing quality of service interfaces and mechanisms for new
networks. To provide a basis for such understanding, we measured the traffic of six dense-matrix
applications written in a dialect of High Performance Fortran and compiled with the Fx paralleliz-
ing compiler. The traffic of these programs is profoundly different from typical network traffic. In
particular, the programs exhibit global collective communication patterns, correlated traffic along
many connections, constant burst sizes, and periodic burstiness with bandwidth dependent period-
icity. The traffic of these programs can be characterized by the power spectra of their instantaneous
average bandwidth. These spectra can be simplified to form analytic models to generate similar
traffic.

Keywords: network traffic characterization, networks of workstations, workstation clusters, paral-
lelizing compilers

1 Introduction

As the performance of local area networks grows, it is increasingly tempting to use a cluster of
workstations as a parallel computer. At the same time, presentation layer APIs such as PVM [21]
and MPI [22], and parallel languages such as High Performance Fortran [10] are being standard-
ized, greatly enhancing the portability of parallel programs to workstation clusters. Further, the
parallel computing community has developed extremely efficient implementations of these APIs
and languages [19,1, 4].

As implementations continue to become more efficient, the performance of the network will
be increasingly important. In addition to significantly increased connection and aggregate band-
widths, next generation LANs, such as ATM [3, 2], will supply quality of service (QoS) guaran-
tees for connections. Parallel programs may be able to benefit from such guarantees. However,
to extract a QoS guarantee from a network, an application must supply a characterization of its
traffic [8]. Much of the work in traffic characterization has concentrated on media streams [9,11],
although some work on ATM call admission for parallel applications has assumed correlated bursty
traffic [7]. In this paper, we detail measurements of the traffic of dense matrix parallel programs
written in a dialect of High Performance Fortran and compiled with the Fx parallelizing com-
piler [13].

In all, we measured the network behavior of six Fx parallel programs on an Ethernet. Five of
these programs are kernels which exhibit global communication patterns common to Fx programs.
Fx parallelizes dense matrix codes written in a dialect of High Performance Fortran. Fx targets
the SPMD machine model, as do many other parallelizing compilers. We also look at a large scale
example of an Fx application, an air quality modeling application which is being parallelized at
CMU in a project related to Fx [14].

The outgrowth of these measurements is the observation that the traffic of Fx parallel programs
is fundamentally different from those of media streams. Specifically, parallel programs exhibit

• Global collective communication patterns

• Correlated traffic along many connections

• Constant burst sizes

• Periodic burstiness

• Bandwidth dependent periodicity

We characterize the programs' bandwidth demands by the power spectra of their instantaneous
average bandwidths. These spectra directly correspond to the Fourier series coefficients needed to
reconstruct the instantaneous average bandwidth at any point in time. Interestingly, these spectra
are rather sparse and "spiky", which means the Fourier expansion can be limited to important
spikes, forming a simple analytic model that approximates the instantaneous average bandwidth.

The paper begins by describing common communication patterns exhibited by Fx parallel pro-
grams. The next section describes each of the six programs we measured, in particular explaining
how its communication pattern arises. Following this, we describe the PVM communications li-
brary used by the the Fx run-time system. Next, we describe our methodology in considerable

1

detail. The main part of the paper presents our measurements, including the power spectrum of
the instantaneous bandwidth for each of the programs. The power spectra of the programs makes
their periodicity absolutely clear. Following the measurements, we discuss the results, and com-
ment on how the power spectra can be used to build simple analytical models of the bandwidth
requirements of the programs. We also discuss a QoS negotiation scheme that is more amenable
to parallel programs. Finally, we conclude with an overview.

2 Communication Patterns of Fx Programs

The Fx [13] compiler parallelizes dense matrix codes based on parallel array assignment state-
ments and targets distributed memory parallel computers using the Single Program, Multiple Data
(SPMD) model. This model is the ultimate target of many parallel and parallelizing compilers.
In the SPMD model, each processor executes the same program, which works on processor-local
data. Frequently, the processors exchange data by message passing, which also synchronizes the
processors. This message exchange is referred to as a communication phase. The parallel program
executes as interleaved communication and local computation phases.

A communication phase can be classified according to the pattern of message exchange among
the processors. In general, this pattern can be many-to-many, where each processor sends to any ar-
bitrary group of the remaining processors. However, certain patterns are much more common than
others, especially in dense matrix computations such as those typically coded in High Performance
Fortran and Fx. For example, the neighbor pattern, where each processor pi sends to processors
Pi-i and pi+1 is common. Another common pattern is all-to-all, where each processor sends to
every other processor. A third pattern is partition, where the processors are partitioned into two
or more sets and each member of a set sends to every member of another set. Fourth, a single
processor may broadcast a message to every other processor. Finally, the pattern can be a tree,
where every second processor sends to its left neighbor and then drops out. This is repeated until
one processor remains. Sometimes this is followed with a "down-sweep", reversing the process.
These communication patterns are summarized in Figure 1.

3 Program descriptions

The six Fx [13] programs chosen for investigation fall into two classes. Five of the programs, SOR,
2DFFT, TDFFT, SEQ, and HIST, are kernels that exhibit the communication patterns discussed in
section 2. These kernels are part of the Fx compiler test suite. AIRSHED [16, 14], an air quality
modeling application, represents a "real" scientific application.

3.1 Fx kernels

Five of the Fx programs, SOR, 2DFFT, T2DFFT, SEQ, and HIST, were chosen to exhibit commu-
nication patterns common to SPMD parallel programs discussed in section 2. These kernels are
summarized in figure 2. For each program, we discuss the distribution of its data (anNxN matrix)
over its P processors, the local computation on each processor, and the global communication it
exhibits.

Neighbor All-to-all Partition Broadcast

Tree (up 1) Tree (up 2) Tree (down 1) Tree (down 2)

Figure 1: Fx Communication patterns

Pattern Kernel Description
Neighbor SOR 2D Successive overrelaxation
All-to-all 2DFFT 2D Data parallel FFT
Partition T2DFFT 2D Task parallel FFT
Broadcast SEQ Sequential I/O
Tree HIST 2D Image histogram

Figure 2: Fx kernels

SOR

SOR is a successive overrelaxation kernel. In each step, each element of an NxN matrix computes
its next value as a function of its neighboring elements. In the Fx implementation, the rows of the
matrix are distributed across P processors by blocks: processor 0 owns the first ^ rows, processor
1 the next ^ rows, etc. Because of this distribution, at each step, every processor p except for
processors 0 and P — 1 must exchange a row of data with processor p — 1 and processor p + 1
before computing the next value of each of the elements it owns. In every step, each processor
performs O(^p-) local work and sends an O(N) size message to processors p — 1 and p + 1. SOR
is our example of such a neighbor communication pattern.

2DFFT

2DFFT is a two-dimensional Fast Fourier Transform. Like in SOR, the N x N input matrix has
its rows block-distributed over the processors. In the first step, local one-dimensional FFTs are run
over each row a processor owns. Next, the matrix is redistributed so that its columns are block-
distributed over the processors. Finally, local one-dimensional FFTs are run over each column a

processor owns. Each processor performs 0 (N]°%N) work and generates aO(f^)) size message
for every other processor. 2DFFT is our example of a all-to-all communication pattern.

T2DFFT

T2DFFT is a pipelined, task parallel 2DFFT. Half of the processors perform the local row FFTs
and send the resulting matrix to the other half, which perform the local column FFTs. A side effect

of the communication is the distribution transpose, so each sending processor sends an 0((^J)
size message to each of the receiving processors. Notice that each message is twice as large as for
2DFFT for the same number of processors. Each processor performs 0(N lpN) work. This is our
example of a. partition communication pattern.

SEQ

SEQ is an example of the kind of broadcast communication pattern that results from sequential I/O
in Fx programs. An N x N matrix distributed over the processors is initialized element-wise by
data produced on processor 0. This is implemented by having processor 0 broadcast each element
to each of the other processors, which collect the elements they need. This program performs no
computation, but processor 0 sends N2 0(1) size messages to every other processor. This is our
example of a broadcast communication pattern.

HIST

HIST computes the histogram of elements of a TV x N input matrix. The input matrix has its rows
distributed over the processors. Each processor computes a local histogram vector for the rows it
owns. After this, there are log P steps, where at step i, processors whose numbers are odd multiples
of 28 send their histogram vector to the processors that are even multiples of 2l. These processors
merge the incoming histogram vector with their local histogram vector. Ultimately, processor 0
has the complete histogram, which it broadcasts to all the other processors. This is an example of
a tree communication pattern.

3.2 AIRSHED Simulation

The multiscale AIRSHED model captures the formation, reaction, and transport of atmospheric
pollutants and related chemical species [15]. The goal of a related research project is to con-
vert this massive application into a portable and scalable parallel program [14]. As a part of this
work, AIRSHED is being ported to Fx. However, at the time of our research, this port had not
been completed. Instead, we measured an Fx skeleton of the application which was prepared by
the group performing the actual port. The skeleton application models both the computation and
communication of the actual application.

AIRSHED simulates the movement and reaction of s chemical species, distributed over do-
mains containing p grid points in each of / atmospheric layers [16]. In our simulation, s = 35
species, p = 1024 grid points, and / = 4 atmospheric layers. The program computes in two prin-
ciple phases: (1) horizontal transport (using a finite element method with repeated application of a
direct solver), followed by (2) chemistry/vertical transport (using an iterative, predictor-corrector
method). Input is an / x s x p concentration array C. Initial conditions are input from disk, and
in a preprocessing phase for the horizontal transport phases to follow, the finite element stiffness

matrix for each layer is assembled and factored. The atmospheric conditions captured by the stiff-
ness matrix are assumed to be constant during the simulation hour, so this step is performed just
once per hour. This is followed by a sequence of k simulation steps {k = 5 in the simulation),
where each step consists of a horizontal transport phase, followed by a chemistry/vertical transport
phase, followed by another horizontal transport phase. Each horizontal transport phase performs
/ x s backsolves, one for each layer and species. All may be computed independently. However,
for each layer /, all backsolves use the same factored matrix A\. The chemistry/vertical transport
phase performs an independent computation for each of the p grid points. Output for the hour is
an updated concentration array C, which is the input to the next hour.

In the implementation, the array is distributed across P processors by layer: processor 0 owns
the first -p layers, processor 1 owns the next p- layers, and so on. In the first stage, the preprocess-
ing and horizontal transport operates on the layer dimension, so the computation is local and no
communication is involved. In the second stage, however, the chemistry/vertical transport operates
on the grid dimension, and so a transpose on the concentration array C is performed to distribute
the data across the processors by grid point: processor 0 owns the first p grid points, processor
1 owns the next p grid points, and so on. Such transpose requires that each processor sends a
message of size 0(pX

p
s*1) to every other processors. Once the chemistry/vertical transport com-

putation is finished, a reversed transpose is performed in a similar fashion - each processor sends
a message of size 0(pp

s*1) to each of the other processors. This is followed by another horizon-
tal transport phase. In summary, each step is characterized by a period of computation phase of
duration U (preprocessing), followed by k back-to-back pairs of all-to-all traffic attributed to the
distribution transpose, interleaved with horizontal transport (of duration th) and vertical/chemical
transport computation (of duration tv).

4 Communication mechanisms

All of our test applications use the PVM system for communication. PVM [21, 12] is a message-
passing and utility package which provides a presentation layer interface which has the syntax and
semantics of message passing interfaces on distributed memory parallel supercomputers. In addi-
tion to message passing, PVM also provides mechanisms for managing a dynamic, heterogeneous
pool of machines as a single "parallel virtual machine." This support is implemented in a user-level
daemon process which is run on each machine. The daemons talk to each other via UDP in order
to maintain information about the global state of the virtual machine, as well as to handle user
requests such as sending signals to remote user processes. Each machine may run multiple user
processes. A user process can communicate with another user process on the same machine or
on a different machine using the same interface. Intramachine communication is done via a local
IPC mechanism. Intermachine communication can be done in two distinct (user selectable) ways.
By default, the message is copied via IPC to the daemon, which sends it to the daemon on the
destination machine via a protocol built on top of UDP. The receiving daemon then delivers the
message to the destination process via IPC. This mechanism has the advantage of better scalabil-
ity, but tends to be somewhat slow. In the alternative mechanism, the messages are sent directly
from the sender process to receiver process via TCP. All of the Fx kernels and AIRSHED use this
mechanism.

PVM messages can contain arbitrary data collected from arbitrary memory locations. Data
is "packed" into a message using a variety of API calls. However, the data is not necessarily
appended into a contiguous memory buffer. Instead, it is stored as a list of fragments which are
sent independently. This distinction is important to understand the behavior of one of the Fx
kernels, T2DFFT. All the other kernels (and AIRSHED) assemble their messages in a copy loop
before using PVM. The result is that each message is sent as a single, large fragment by PVM. The
copy loop is an artifact of other (older) Fx implementations for message passing systems which
only support sending contiguous buffers. T2DFFT, however, tries to avoid the intermediate copy
step by performing multiple packs per message. The result is that each message is passed to the
socket layer as a series of fragments.

5 Methodology

Our approach is to directly measure the network traffic of each of the programs on a LAN of
Ethernet [17] connected DEC Alpha [6] workstations. A machine running in promiscuous mode is
used to record each packet. This data is then analyzed using a variety of simple, custom programs.

5.1 Environment

Nine DEC 3000/400 Alpha (21064 [5] at 133 MHz with 64 MB RAM) workstations [6] run-
ning OSF/1 2.0 were used as our testbed. The built-in Ethernet [17] adaptors were married to a
multi-segment bridged Ethernet LAN, so all machines shared a common collision domain and an
aggregate 1.25 MB/s of bandwidth. Since these machines are office workstations and other ma-
chines share the LAN, all measurements were performed in the early morning hours (4-5 am) to
avoid other traffic, and were repeated several times.

5.2 Compilation

Each of the six Fx programs can be compiled for an arbitrary number of processors. Due to the
stress these programs place on machines and networks, it was decided to compile them for four
processors. The programs were compiled with version 2.2 of Fx compiler and version 3.3 of the
DEC Fortran compiler. The basic level of optimization (-O) was used with the latter compiler. The
object files were linked with version 3.3.3 of PVM and with version 2.2 of the Fx/PVM run-time
system.

5.3 Measurement

To measure the network traffic, one of the workstations was configured with the DEC packet filter
software, which allows priveledged users to use the network adaptor in promiscuous mode. The
measurement workstation was not used to run any Fx program. Instead, it ran the TCPDUMP
program included with OSF/1 and collected a trace of all the packets on the LAN generated by
each test program. For the Fx programs, including AIRSHED, each outer loop as iterated 100
times, except for SEQ, which was iterated five times.

Each of our traces captured all the packets on the network, providing a time stamp, size, pro-
tocol, source and destination for each packet. We considered the size of the packet to include the
data portion, TCP or UDP header, IP header, and Ethernet header and trailer. Where sensible, we
produced a trace for a single connection by extracting all packets sent from one host to another.

6 Results

In this section, we describe the traffic characteristics for each of the six Fx programs.

6.1 Fx kernels

For each of the kernels, we examined its aggregate traffic and the traffic of a representative con-
nection, if there was one. We define a connection to be a kernel-specific simplex channel between
a source machine in a destination machine. Thus for P = 4, each of the kernels exhibits 12
connections. Notice that by considering a connection between machines as opposed to between
machine-port pairs, we capture all kernel-specific traffic between a source and destination machine.
This includes TCP traffic for message passing, UDP traffic between the PVM daemons, and TCP
ACKs for the symmetric channel. The communication pattern of HIST and SEQ are not symmet-
ric, so we only examine the aggregate traffic of these kernels. T2DFFT's pattern is symmetric
about the partition, so we consider a connection from a machine in the sending half to a machine
in the receiving half. The other kernels have symmetric communication patterns, so we choose the
connection between an two arbitrary machines.

The traffic of each of the kernels is characterized by its packet sizes, interarrival times for pack-
ets, and bandwidth, both for the aggregate traffic and the traffic over the representative connection.
We concentrate on characterizing the bandwidth, since this appears the most interesting.

We note here that the graphs presented are not all to the same scale. The intention is to better
highlight the features of each graph. However, this does make quick comparisons between graphs
more difficult.

Packet size statistics

Figure 3 shows the minimum, maximum, average and standard deviation of packet sizes for each
of the five applications. The first table covers all the connections while the second includes only
packets in a single representative connection. Although we do not present histograms here, it is
important to remark that for several of the kernels (2DFFT, HIST, SOR), the distribution of packet
sizes is trimodal. This is because these programs send messages large messages which are split
over several maximal size packets and a single smaller packet for the remainder. Further, because
TCP is used for the data transfer, there are a significant number of ACK packets. One would expect
T2DFFT to also send large messages and therefore exhibit a trimodal distribution of packet sizes.
However, a different PVM mechanism is used to assemble messages in T2DFFT. As described
in section 4, PVM internally stores messages as a fragment list and generates packets for each
fragment separately. Because of the way messages are assembled in T2DFFT, many fragments
result, explaining the variety of packet sizes.

Program
Packet Size (Bytes)

Min Max Avg SD
SOR 58 1518 473 568
2DFFT 58 1518 969 678
T2DFFT 58 1518 912 663
SEQ 58 90 75 14
HIST 58 1518 499 575

Program
Packet Size (Bytes)

Min Max Avg SD
SOR 58 1518 577 591
2DFFT 58 1518 977 667
T2DFFT 134 1518 1442 158
SEQ - - - -

HIST - - - -

(aggregate) (connection)

Figure 3: Packet size statistics for Fx kernels

Program
Interarrival Time (ms)

Min Max Avg SD
SOR 0.0 1728.7 82.1 234.9
2DFFT 0.0 1395.8 1.3 10.8
T2DFFT 0.0 1301.6 1.5 14.3
SEQ 0.0 218.6 1.3 8.6
HIST 0.0 449.9 16.5 45.5

Program
Interarrival Time (ms)

Min Max Avg SD
SOR
2DFFT
T2DFFT
SEQ
HIST

0.0
0.0
0.0

1797.0
2732.6
4216.7

614.2
15.1
9.5

590.8
120.5
127.3

(aggregate) (connection)

Figure 4: Packet interarrival time statistics for Fx kernels

Interarrival time statistics

Figure 4 shows the minimum, maximum, average, and standard deviation of the packet interarrival
times for each of the five programs. The first table shows the statistics for all the connections,
while the second concentrates on a single representative connection. Notice that ratio of maximum
to average interarrival time for each program is quite high. This is due to the aggregate bursty
nature of the traffic, as we discuss below.

Bandwidth

Figure 5 shows the aggregate and per-connection average bandwidth used over the lifetime of each
of the five programs. It is somewhat counter-intuitive (and quite promising!) that even the most
communication intensive Fx programs such as 2DFFT do not consume all the available bandwidth.
However, recall that Fx programs synchronize via their global communication phases, so there are
stretches of time where every processor is computing. Each of these periods is followed by an
intense burst of traffic, as every processor tries to communicate.

It is important to note that this synchronization is inherent in the Fx model and is not merely
a result of serialization due to the Ethernet MAC protocol. In fact, in several new communica-
tion strategies optimized for compiler-generated SPMD programs the global synchronization is
enforced by a separate barrier synchronization before each communication phase [18, 20].

The effect of this inherent synchronization is made clear by examining figure 6, which plots
the instantaneous bandwidth averaged over a 10 ms window for the each of the kernel. This was

8

Program KB/s
SOR 5.6
2DFFT 754.8
T2DFFT 607.1
SEQ 58.3
HIST 29.6

Program KB/s
SOR 0.9
2DFFT 63.2
T2DFFT 148.6
SEQ -
fflST -

(aggregate) (connection)

Figure 5: Average bandwidth for Fx kernels

computed using a sliding 10 ms averaging window which moves a single packet at a time. For the
SOR, 2DFFT, and T2DFFT kernels, the aggregate bandwidth is plotted on the left and the band-
width of the representative connection on the right. Since HIST and SEQ have no representative
connection, only their aggregate bandwidths are plotted. In each case, we show a ten second span
of time, enough to include several iterations of the kernel. The complete traces are between 50 and
several hundred seconds long.

The most remarkable attribute of each of the kernels is that the bandwidth demand is highly
periodic. Consider the 2DFFT. Both plots show about five iterations of the kernel. Notice that
there are substantial portions of time where virtually no bandwidth is used (all the processors are
in a compute phase). The reason the third and fourth burst are short is because they are, in fact, a
single communication phase where some processor descheduled the program. Because the all-to-
all communication schedule is fixed and synchronous, the communication phase stalled until that
processor was able to send again.

Figure 7 shows the corresponding power spectra (periodograms) of the instantaneous average
bandwidth. The power spectra show the frequency-domain behavior of the bandwidth, and are
very useful for characterizing it, as we will explore in Section 7.2. It is important to note that the
power spectra capture the periodicity of the bandwidth demands these applications place on the
network.

For these calculations, the entire trace of each kernel was used, not just the first 10 seconds
displayed in figure 6. Because a power spectrum computation requires evenly spaced input data,
the input bandwidth was a computed along static 10 ms intervals by including all packets that
arrived during the interval. This is a close approximation to the sliding window bandwidth, and
more feasible than correctly sampling the sliding window bandwidth data, which would require a
curve fit over a massive amount of data.

Not surprisingly, SEQ, in which processor 0 repeatedly broadcasts a single word, is extremely
periodic, with the four Hz harmonic being the most important. HIST has a 5 Hz fundamental with
linearly declining harmonics at 10, 15, etc. Hz.

SOR and 2DFFT display opposite relationships between the connection and aggregate power
spectra. For SOR, the connection power spectrum shows great periodicity, with a fundamental of
about 5 Hz and interestingly modulated harmonics, but the aggregate power spectrum shows far
less clear periodicity. For 2DFFT, the relationship is the reverse, although less strong, with a clear
fundamental of 1/2 Hz and exponentially declining harmonics. There are two explanations for

this. First, 2DFFT transfers more data per message than SOR (0((f)) versus O(N), N = 512,

"SO R. all.patch .tl me, wlnbw, chop" "SOR.b „.»An, ■»» —
60

■

■ 4Q
■

■ 20

i 00

1 |

£

1 SO

60

40

20

A

u ̂ - u L_ I L J L_—11 ,

(SOR - aggregate)

(2DFFT - aggregate)

(T2DFFT - aggregate)

(SOR- conne ction)
■FFT.ba.pntch.time.wlnbw.chop'

1200 I •

1000 I
800

BOO

400

200

,' ■ ■ _JJ«_- M i,

(2DFFT - connection)

(T2DFFT - connection)

(SEQ - aggregate) (HIST - aggregate)

Figure 6: Instantaneous bandwidth of Fx kernels (10ms averaging interval)

10

3.5 -

2.5

I
P 2 z

1.5 .

C.5

ill ,i JlilMiUl iLJiliLuliiii Jlii,,.J.L.,j)il
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15

(SOR - aggregate)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

(2DFFT - aggregate)

(T2DFFT - aggregate)

30 35 40 45 50

(SOR - connection)

(2DFFT - connection)

i mLHkAAdjjJlu...j*.^...uL.
4.5 5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

(T2DFFT - connection)

a ■

7 ■

6

2.5-

3-

WJIIILHILB illikLk
(SEQ - aggregate)

0 5 10 15 20 25 30 35 40 45 50

(HIST - aggregate)

Figure 7: Power spectrum of bandwidth of Fx kernels (10ms averaging interval)

11

Program
Packet Size (Bytes)

Min Max Avg SD
AIRSHED 58 1518 899 693

(aggregate)

Program
Packet Size (Bytes)

Min Max Avg SD
AIRSHED 58 1518 889 688

(connection)

Figure 8: Packet size statistics for AIRSHED

P = 4), so has a better chance of being descheduled (as discussed above). Second, 2DFFT"s
communication pattern more closely synchronizes all the processors than SOR's. Thus a single
SOR connection has a better chance of being periodic because the sending processor is less likely
to be descheduled. On the other hand, SOR's aggregate traffic will be less periodic because the
processors are less tightly synchronized. Notice, however, that in both cases, the representative
connection's power spectrum does show considerable periodicity.

T2DFFT's power spectra have the least clear periodicity of all the Fx kernels. However, the
aggregate spectrum seems slightly cleaner than the spectrum of the representative connection. The
fact that neither spectrum is very clean is surprising given the synchronizing nature of this pattern,
the balanced message sizes, and the communication schedule (shift) used for it. We believe the
problem arises from PVM's handling of the message as a cluster of fragments.

6.2 AIRSHED Simulation

For AIRSHED, we examined both the aggregate traffic as well as the traffic of one connection.
The format of the data we present mirrors that of the previous section.

Packet size statistics

Figure 8 shows the minimum, maximum, average, and standard deviation of packet sizes for the
AIRSHED application (for all connections and for the representative connection). We observe that
the packet size distribution for the single connection is very similar to the aggregate packet distri-
bution, which supports the argument that the traffic from the single connection is representative of
the aggregate traffic.

Interarrival time statistics

Figure 9 shows the minimum, maximum, average, and the standard deviation of packet interarrival
times. Note that both the maximum and average interarrival times are of an order of magnitude
greater than that of the kernel applications. As in the case of the kernel applications, the ratio of
maximum to average interarrival time is quite high, which is characteristic of bursty traffic.

Bandwidth

The average aggregate and per-connection bandwidths for the AIRSHED application are 32.7 KB/s
and 2.7 KB/s, respectively. Figure 10 shows the instantaneous bandwidth averaged over a 10 ms
window (over a 500 sec interval, and a 60 sec interval). It is clear that the bandwidth demand is

12

Program
Interarrival Time (ms)

Min Max Avg SD
AIRSHED 0.0 23448.6 26.8 513.3

(aggregate)

Program
Interarrival Time (ms)

Min Max Avg SD
AIRSHED 0.0 37018.5 317.4 2353.6

(connection)

Figure 9: Packet interarrival time statistics for AIRSHED

| 800 | 800

1000 1050 1100 1150 1200 1250 1X0 1350 1400 1450

(aggregate, 500 seconds)

•AIRSHED.ba.pBtdi.tlma.wlnbw.etiop.1000.1500

-

1150 1200 1250 1300 1350 1400 1450 1500

(connection, 500 seconds)

| 800

"AIRSH ED.all. patch.t Una .w ■AIRSHED.ba.patch.th

(aggregate, 60 seconds) (connection, 60 seconds)

Figure 10: Instantaneous bandwidth of AIRSHED (10ms averaging interval)

highly periodic, and is periodic over three different time scales. The simulation is divided into a
sequence of h simulation-hours (h = 100 in the simulation), each of which involves a sequence
of k simulations steps {k = 5). Each simulation hour starts with a preprocessing stage, where the
stiffness matrix is computed. Once the stiffness matrix is computed, the program moves on to the
simulation stages. Such simulation is characterized by (1) a local horizontal transport computation
phase, (2) a subsequent global all-to-all transpose traffic, (3) a local chemical/vertical transport
computation phase, and finally (4) a global all-to-all transpose traffic in the reversed direction.

A total of 100 bursty periods are observed, corresponding to the 100 simulation hours. The
bandwidth utilization between each bursty period is very low because no communication is in-
volved during the preprocessing stage at the beginning of each simulation hour. Each bursty period
can be further divided into 5 pairs of peaks, with each pair of peaks corresponding to one simu-
lation step. The time between each pair of peaks reflects the time spent in the chemical/vertical
transport computation stage, whereas the time interval between adjacent pairs - which is slightly

13

0.01 0.02 0.03 0.04 0.05 O.OB 0.07 0.08 0.09 0.1

(aggregate, 0-0.1 Hz)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1

(aggregate, 0-1 Hz)

0 1 2

8-

5-

i
£3

2-

«^ L_ lii Ll ß_J ^I i_l_ L. ,
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.03 0.09 0.1

(connection, 0-0.1 Hz)

1 0.2 0.3 0.4 0.5 0.0 0.7 0.8 0.9 1

(connection, 0-1 Hz)

(aggregate, 0-20 Hz) (connection, 0-20 Hz)

Figure 11: Power spectrum of bandwidth of AIRSHED (10ms averaging interval)

shorter - corresponds to the time spent in the horizontal transport computation. Such periodicity
becomes very clear when we observe the power spectra for the AIRSHED simulation (figure 11).
There are three peaks (plus their harmonics) in the power spectrum at approximately 0.015 Hz (66
sec, corresponding to a simulation hour), 0.2 Hz (5 sec, corresponding to the length of the chem-
ical/vertical transport phase), and 5 Hz (200 ms, corresponding to that of the horizontal transport
phase), respectively. Section 7.2 discusses the use of power spectra for characterizing the network
traffic of these programs.

14

7 Discussion

The measurement and analysis of the Fx kernels and the AIRSHED program point to several
important characteristics of the network traffic of Fx parallel programs. The most important of
these is that their periodicity is well characterized by their power spectra, and can be emulated by
simplifying the Fourier series implied by the spectra. Finally, we suggest a negotiation model for
QoS which would allow both the network and the program to co-optimize for performance.

7.1 Elementary characteristics

Fx programs exhibit some global, collective communication patterns which may not necessarily
be characterized by the behavior of single connection. For example, the SEQ (broadcast pattern)
and HIST (tree pattern) kernels are not symmetric — in SEQ only the connection from processor
0 to the every other processor (and the symmetric connections back to processor 0) see traffic.
Further, characterizing the symmetric patterns such as neighbor, all-to-all, and partition by a single
connection ignores the fact that these patterns are very different in the number of connections that
are used. For example, each of the patterns may communicate the same size message along a
connection, but while all-to-all sends such a message along all P(P — 1) connections, neighbor
sends a message along only at most 2P connections. The partition pattern is in the middle at ^
connections for an equal partition into two halves.

Another important characteristic of Fx programs is that their communication phases are syn-
chronized, either explicitly or implicitly. This means that the traffic along the active connection is
correlated and any traffic model must capture this. Further, the stronger the synchronization, the
more likely it is that the connections are in phase.

7.2 Characterizing periodicity

As stated above, the synchronized communication phases of a Fx program imply that its connec-
tions act in phase. Thus, the power spectra of Figures 7 and 11 fully characterize the bandwidth
demands of the applications discussed in this paper. Furthermore, it should be realized that the
power spectrum is the square of the Fourier transform of the time-domain instantaneous average
bandwidth. Since this underlying signal is periodic, the transform is a Fourier series:

oo

X(u>)= J2 2™k6(u-u0) (1)
k=—co

where the ak are the coefficients which can be read off of the power spectrum graphs. The time-
domain instantaneous bandwidth can then be reconstructed as:

oo

x(t)= Y. a^k"0t (2)
k=—oo

While the summation may appear analytically daunting, note that x(t) can be approximated by
choosing some number of the "spike" aks from the spectra (those with the greatest magnitude). As
the number of spikes chosen increases, the approximation will converge to the actual signal.

15

7.3 QoS negotiation model

Consider a simple parallel program where each processor generates periodic bursts along one of its
connections (a shift pattern.) Unlike variable bit rate video source, where the periodicity is known,
but the burst size is variable, the parallel program's burst size is usually known a priori (in the case
of Fx, at compile-time), but the period between bursts depends on the number of processors and
the bandwidth the network can provide to the application during the burst. Suppose the program
performs W work during a compute phase, and each processor send a message of length N. If the
network can allocate a burst bandwidth of B for each active connection without congestion, then
the burst length is U = ^ and the burst interval is tu = y- + |f. Notice that the burst interval,
which certainly plays into the decision of what B the network can commit to, is a function of B
itself (as well as of the other commitments the network has made.)

It must pointed out that the parallel program clearly wants to minimize £&; in order to minimize
its total execution time. One way it can do this is to increase the number of processors P it runs
on. However, there is a natural tension with the bandwidth B that the network can commit to, and,
less obviously, the communication pattern determines how strong that tension is. Thus getting the
best performance from a parallel program on a network is essentially an optimization problem,
where the number of processors plays a role. We suggest that a SPMD parallel program should
characterize its traffic with three parameters, [/(),&(), c], where c is the communication pattern, / is
a function from the number of processors P to the local computation time tiocai on each processor,
and b is a function from P to the burst size N, along each connection. In order to meet the
"guarantee" of minimizing tbi, the network is allowed to return the number of processors P the
program should run on.

8 Conclusions and Future Work

We measured the traffic characteristics of six parallel programs on an Ethernet. The conclusion to
be drawn from the measurements is that the traffic of parallel programs is fundamentally different
from the media traffic that is the current focus of QoS research. Unlike media traffic, there is
no intrinsic periodicity due to a frame rate. Instead, the periodicity is determined by application
parameters and the network itself. We suggested a traffic characterization and service negotiation
model that allows the network to modulate application parameters in an effort to achieve the best
performance possible given the current network state. This is clearly an important area for future
research.

16

Bibliography

[1] AGRAWAL, G., SUSSMAN, A., AND SALZ, J. An integrated runtime and compile-time
approach for parallelizing structured and block structured applications. IEEE Transaction on
Parallel and Distributed Systems 6, 7 (July 1995), 747-754.

[2] BIAGIONI, E., COOPER, E., AND SANSOM, R. Designing a practical ATM LAN. IEEE
Network (March 1993), 32-39.

[3] DEPRYCHER, M., PESCHI, R., AND LANDEGEM, T. V. B-ISDN and the OSI protocol
reference model. IEEE Network (March 1993), 10-18.

[4] DiNDA, P. A., AND O'HALLARON, D. R. Fast message assembly using compact address
relations. In Proc. ofSIGMETRICS '96 (Philadelphia, 1996), ACM, pp. 47-56.

[5] DOBBERPUHL, D. I. A. A 200-MHz 64-bit dual-issue CMOS microprocessor. Digital Tech-
nical Journal 4, 4 (1992), 35-50. ftp://ftp.digital.com/pub/Digital/info/DTJ/axp-cmos.txt.

[6] DUTTON, T. A., EIREF, D., KURTH, H. R., REISERT, J. J., AND STEWART, R. L. The
design of the DEC 3000 AXP systems, two high performance workstations. Digital Technical
Journal 4,4 (1992), 66-81. ftp://ftp.digital.com/pub/Digital/info/DTJ/axp-dec-3000.txt.

[7] FERNANDEZ, J. R., AND MUTKA, M. W. Model and call admission control for distributed
applications with correlated bursty traffic. In Proceedings of Supercomputing '95 (San Diego,
December 1995).

[8] FERRARI, D. Client requirements for real-time communication services. IEEE Communica-
tions Magazine 11, 11 (November 1990), 65-72.

[9] FERRARI, D., BANERJEA, A., AND ZHANG, H. Network support for multimedia - a dis-
cussion of the tenet approach. Computer Networks and ISDN Systems 26, 10 (July 1994),
1167-1180.

[10] FORUM, H. P. F. High Performance Fortran language specification version 1.0 draft, Jan.
1993.

[11] GARRETT, M., AND WILLINGER, W. Analysis, modeling and genreation of self-similar
VBR video traffic. In Proceedings ofSIGCOMM '94 (London, September 1994).

[12] GEIST, A., BEGUELIN, A., DONGARRA, J., JIANG, W., MANCHECK, R., AND SUN-

DERAM, V. PVM: Parallel Virtual Machine. MIT Press, Cambridge, Massachusetts, 1994.

17

[13] GROSS, T., O'HALLARON, D., AND SUBHLOK, J. Task parallelism in a High Performance
Fortran framework. IEEE Parallel & Distributed Technology 2, 3 (1994), 16-26.

[14] KUMAR, N., RüSSEL, A., SEGALL, E., AND STEENKISTE, P. Parallel and distributed
application of an urban regional multiscale model. Carnegie Mellon Dept. of Mech. Eng. and
Dept. of Computer Science, 1995. working paper.

[15] MCRAE, G., GOODIN, W., AND SEINFELD, J. Development of a second-generation math-
ematical model for urban air pollution - 1. model formulation. Atmospheric Environment 16,
4 (1982).

[16] MCRAE, G., RUSSELL, A.,, AND HARLEY, R. CITPhotochemical Airshed Model -System
Manual. Carnegie Mellon University, Pittsburgh, PA, and California Institute of Technology,
Pasadena, CA, Febrary 1992.

[17] METCALFE, R. M., AND BOGGS, D. R. Ethernet: Distributed packet switching for local
computer networks. Communications of the ACM 19,1 (July 1976), 365-404.

[18] OSBORNE, R. A hybrid deposit model for low overhead communication in high speed lans.
In Proceedings of 4th IFIP International Workshop on Protocols for High Speed Networks
(August 1994), G. Neufeld and M. Ito, Eds., ???

[19] STICHNOTH, J., O'HALLARON, D., AND GROSS, T. Generating communication for array
statements: Design, implementation, and evaluation. Journal of Parallel and Distributed
Computing 21, 1 (Apr. 1994), 150-159.

[20] STRICKER, T. M. A Communication Infrastructure for Parallel and Dsitributed Programs.
PhD thesis, Carnegie Mellon University School of Computer Science, November 1996. To
Appear.

[21] SUNDERAM, V. S. Pvm : A framework for parallel distributed computing. Concurrency:
Practice and Experience 2, 4 (December 1990), 315-339.

[22] WALKER, D. The design of a standard message passing interface for distributed memory
concurrent computers. Tech. Rep. TR-12512, ONRL, October 1993. To appear in Parallel
Computing, 1994.

18

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required
not to discriminate in admission, employment, or administration of its programs or activities
on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil
Rights Act of 1964. Title IX of the Educational Amendments of 1972 and Section 504 of the
Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or
administration of its programs on the basis of religion, creed, ancestry, belief, age, veteran
status, sexual orientation or in violation of federal, state, or local laws or executive orders.
However, in the judgment of the Carnegie Mellon Human Relations Commission, the Depart-
ment of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Neverthe-
less, all ROTC classes at Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone (412) 268-
6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, telephone (412) 268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

